Extra Practice

Chapter 6

Lesson 6-1

Find the sum of the interior angle measures of each polygon.

1. octagon 1080
2. 16-gon 2520
3. 42-gon 7200

Find the missing angle measures.

4. $x = 100; (x + 5) = 105$
5. $x = 110; y = 102; z = 82$
6. $x = 122; (x - 6) = 116$

Find the measure of one interior angle and the measure of one exterior angle in each regular polygon.

7. nonagon interior: 140, exterior: 40
8. 20-gon interior: 162, exterior: 18
9. 45-gon interior: 172, exterior: 8

Lesson 6-2

Find the values of the variables in each parallelogram.

10. $x = 12; y = 84$
11. $x = 30; y = 55$
12. $x = 8; y = 25$
13. $x = 1; y = 7$
14. $x = 26; y = 11$
15. $x = 8; y = 4$
16. Given: $PQRS$ and $QDCA$ are parallelograms.

Prove: $AP = BS$

Since $PQRS$ is a \square, its opp. sides are \parallel, so $\overline{PA} \parallel \overline{SB}$ and $\overline{PS} \parallel \overline{QR}$. Since $QDCA$ is a \square, $\overline{AB} \parallel \overline{QR}$. Thus, $\overline{PS} \parallel \overline{AB}$ because two lines \parallel to the same line \parallel. $PABS$ is a \square by def. of \square, and $AP = BS$ since opp. sides of a \square are \equiv.

17. Given: $\square ABCD$

Prove: $\overline{PM} \parallel \overline{AD}$

Since \overline{PM} bisects each other, so P is the midpt. of AC.

P and M are midpts. of two sides of $\triangle ACD$ so, by the \triangle Midseg. Thm., $\overline{PM} \parallel \overline{AD}$.
Chapter 6

18. In the figure, $BD = DF$. Find DG and EG.

$DG = 3.2; EG = 2.05$

Lesson 6-3

Based on the markings, decide whether each figure must be a parallelogram.

19. yes

20. yes

21. no

22. yes

23. no

24. yes

25. Describe how you can use what you know about parallelograms to construct a point halfway between a given pair of parallel lines.

Sample answer: Mark two \parallel segments on each of the two \parallel lines. The two segments are opposite sides of a \parallel. Construct (draw) the diagonals of the \parallel. The diagonals intersect at their midpts., which is the desired point halfway between the \parallel lines.

26. Given: $\square ABCD$

$BX \perp AC, DY \perp AC$

Prove: $BXDY$ is a parallelogram.

$ABCD$ is a \square (given), so $\overline{AB} \parallel \overline{DC}$ and $\overline{AB} \equiv \overline{DC}$. $\angle BAX \equiv \angle DCY$ by the Alt. Int. \triangle Thm. $\angle AXB$ and $\angle CYD$ are rt. \triangle and therefore \equiv. $\triangle AXB \equiv \triangle CYD$ by AAS and $\overline{BX} \equiv \overline{DY}$ by CPCTC.

Since $BX \perp AC$ and $DY \perp AC$ (given), $\overline{BX} \equiv \overline{DY}$. $BXDY$ has a pair of sides \parallel and \equiv, so $BXDY$ is a \square.

Lessons 6-4 and 6-5

For each parallelogram, determine the most precise name and find the measures of the numbered angles.

27. square;

$m\angle 1 = 45$;

$m\angle 2 = 45$

28. rhombus;

$m\angle 1 = 50$;

$m\angle 2 = 90$;

$m\angle 3 = 40$;

$m\angle 4 = 40$

29. \square;

$m\angle 1 = 45$;

$m\angle 2 = 45$;

$m\angle 3 = 80$;

$m\angle 4 = 55$

30. rectangle;

$m\angle 1 = 116$;

$m\angle 2 = 64$;

$m\angle 3 = 32$;

$m\angle 4 = 58$

31. rhombus; $m\angle 1 = 90$; $m\angle 2 = 27$;

$m\angle 3 = 63$; $m\angle 4 = 63$

32. rectangle;

$m\angle 1 = 40$;

$m\angle 2 = 100$;

$m\angle 3 = 50$;

$m\angle 4 = 80$
33. Use the information in the figure.
 Explain how you know that $ABCD$ is a rectangle.
 By the Conv. of the Isos. △Thm. and given that $PA = PB$, it follows that $PD = PA = PB = PC$. Thus, the diagonals of $ABCD$ bisect each other (so $ABCD$ is a □) and are \perp (by the Seg. Add. Post.), so $ABCD$ is a rectangle.
 What value of x makes each figure the given special parallelogram?

34. □$ABCD$ is a rhombus. What is the relationship between $\angle 1$ and $\angle 2$?
 △ABC and △ACD are congruent isosceles triangles with their vertex angles at point P. What kind of figure is $ABCD$? Be sure to consider all the possibilities.
 △ABK and △BCD are congruent isosceles triangles with their vertex angles at point P. What kind of figure is $ABCD$? Be sure to consider all the possibilities.

35. rhombus

 \[
 (5x - 15)° \\
 (4x + 1)° \\
 x = 16
 \]

36. rectangle

 \[
 3x + 3 \\
 5x - 11 \\
 x = 7
 \]

37. rhombus

 \[
 x = 8 \\
 (4x + 5)° \\
 (7x - 3)°
 \]

Lesson 6-6

Find $m\angle 1$ and $m\angle 2$.

38.

 \[
 m\angle 1 = 110, \\
 m\angle 2 = 25
 \]

39.

 \[
 m\angle 1 = 67, \\
 m\angle 2 = 23
 \]

40.

 \[
 m\angle 1 = 53, \\
 m\angle 2 = 74
 \]

41.

 \[
 m\angle 1 = 110, \\
 m\angle 2 = 70
 \]

42.

 \[
 m\angle 1 = 70, \\
 m\angle 2 = 70
 \]

43.

 \[
 m\angle 1 = 74, \\
 m\angle 2 = 106
 \]

44. Suppose you manipulate the figure so that △PAB, △PBC, and △PCD are congruent isosceles triangles with their vertex angles at point P. What kind of figure is $ABCD$? Be sure to consider all the possibilities.
 △ABK and △BCD are congruent isosceles triangles with their vertex angles at point P. What kind of figure is $ABCD$? Be sure to consider all the possibilities.
 △ABC and △ACD are congruent isosceles triangles with their vertex angles at point P. What kind of figure is $ABCD$? Be sure to consider all the possibilities.

Find EF in each trapezoid.

45.

 \[
 A \quad \frac{x + 1}{3x - 2} \\
 B \quad 10 \\
 E \quad F \\
 D \quad C
 \]

 $EF = 7$

46.

 \[
 A \quad \frac{x + 5}{4x + 2} \\
 B \quad \frac{x + 3}{2x} \\
 E \quad F \\
 D \quad C
 \]

 $EF = 7$

47.

 \[
 A \quad \frac{x - 2}{x + 3} \\
 B \quad \frac{x + 3}{2x} \\
 E \quad F \\
 D \quad C
 \]

 $EF = 11$
Chapter 6

Lesson 6-7

Graph the given points. Use slope and the Distance Formula to determine the most precise name for quadrilateral $ABCD$.

48. $A(3, 5), B(6, 5), C(2, 1), D(1, 3)$

49. $A(-1, 1), B(3, -1), C(-1, -3), D(-5, -1)$

Lesson 6-8

Give coordinates for points D and S without using any new variables.

50. parallelogram

51. rhombus

52. isosceles trapezoid

Lesson 6-9

53. A square has vertices at $(2a, 0), (0, 2a), (-2a, 0),$ and $(0, -2a)$.

Use coordinate geometry to prove that the midpoints of the sides of a square determine the square.

Given: Square $DRSQ$ with K, L, M, N midpts. of DR, RS, SQ and QD, respectively.

Prove: $KLMN$ is a square. $K(a, a), L(-a, -a), M(-a, a),$ and $N(-a, -a)$ are midpts. of the sides of the square. $KL = LM = MN = NK = 2a$. The slopes of KL and MN are undefined. The slopes of LM and NK are 0, so adj. sides are \perp to each other. Since all \angle are rt. \triangle, the quad. is a rectang. A rectang with all \equiv sides is a square.

54. In the figure, $\triangle PQR$ is an isosceles triangle. Points M and N are the midpoints of PQ and PR, respectively.

Give a coordinate proof that the medians of isosceles triangle PQR intersect at $H\left(0, \frac{2b}{3}\right)$.

The line through $R(2a, 0)$ and $M(-a, b)$ is $y = -\frac{b}{3a}(x - 2a)$.

The line through $Q(-2a, 0)$ and $N(a, b)$ is $y = \frac{b}{3a}(x + 2a)$. For each line, when $x = 0$, $y = \frac{2b}{3}$, so the three medians all contain point $H\left(0, \frac{2b}{3}\right)$.